Resolving subsurface structure from cross-correlations of continuously recorded ambient noise at Long Beach, CA %%é
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BACKGROUND AND MOTIVATION ESTIMATED SURFACE WAVES SURFACE-WAVE TOMOGRAPHY
Identifying subsurface structures is vital to a number of fields, including earthquake By cross-correlating the recordings at one receiver with all other receivers in the array, we transform that receiver By turning each receiver into a virtual source, we can generate a full virtual seismic survey. The
hazard analysis and groundwater monitoring. Active-source seismic surveys are into a virtual seismic source. The seismic signals emitted by these virtual sources are typically dominated by arrival time of these surface waves are used for surface-wave eikonal tomography on a model
effective at resolving these types of structures, but they are often expensive and surface waves (Figure 3). domain discretized by Delaunay triangles. The high-velocity region in the southern part of the
disruptive. As seismic arrays become larger, denser, and longer-duration, an 25 4 s 65 array coincides with the Newport-Inglewood fault (Figure 7).
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where w is frequency, *.is the c.omplex conjugate, |®| is the real absolute value of ESTIMATED BODY WAVES = -
the spectrum, and <*> is the time-averaged ensemble (Bensen et al., 2007). The | | 14 detect body waves, we focus on higher frequencies (3-15 Hz) and sum over all virtual-source gathers (Figure 4).
quality of the signal improves as more recordings are used. This formula recovers | | \we implement the following post-correlation processing steps to extract diving body-wave energy from individual - ~ =
both waves that travel along the surface. (surfacg waves) and waves that tra.vel receiver pairs (Figures 5 and 6). radial offset (km) S 1 & 3 4 =& 51 5 4 4 &
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workflow. 1) Apply Gaussian-shaped taper to each correlation result to set 3 Figure 7: Phase-velocity maps. Left: From 1.25-Hz signal. Right: From 1.00-Hz signal. Black lines
Ambient noise recordings (48 TB, 2 million traces) signal outside of expected body-wave arrival time to zero o O “x\ indicate the Newport-Inglewood fault. Lower frequencies are sensitive to deeper depths.
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2) Compute correlation coefficient between each correlation result
Resample data and the corresponding trace in the super-source gather (Figure 4) o BODY-WAVE TOMOGRAPHY
~a By using body waves in a tomographic workflow, we obtain higher-resolution subsurface
- 3) Accept only correlation results with a correlation coefficient T o structures compared to those obtained from surface-wave tomography. The high-velocity zone in
Resampled data (3 TB, 2 million traces) above 0.3 (retains 10% of data) _ the southern part of Figure 8 suggests the presence of the Newport-Inglewood fault.
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_ : 4) Apply adaptive covariance filter (ACF) to suppress incoherent Figure 4: Virtual super-source gather after Y P velocity (kms)
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energy in each correlation (Lawrence, 2014) summing over all cross-correlation results 0=
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Figure 6: Snapshots in time of a virtual-source gather (3-15
Hz) in map view for a source in northern part of the array
(indicated by cross). The strong wavefronts propagating
away from the virtual source are body waves. Blue line
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Figure 1: Flow chart of cross-correlation processing steps. From 48 TB of data, we
synthesize 26 GB of coherent seismic data.
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* 3 months of continuous 5 Figure 8: Vertical and horizontal slices of inverted P-wave velocity cube. From (a)--(c), slices shift
(24 hr/day) recordings g & shallower, east, and north. Purple lines show the location of slices. Velocities are detrended by

* 2mssampling rate - oK subtracting the horizontally averaged one-dimensional velocities shown in panel (d). The

j N colormap is valid for panels (a)-(c), where blue indicates faster velocities than the velocity in
= R, A | panel (d). The shaded areas in the velocity slices are poor ray coverage areas.
Figure 2: Left: Map of the Long Beach seismic array. reveiver plogii?: x (klri?8

CONCLUSIONS

* Cross-correlation of 48 TB of continuous ambient seismic noise recordings at Long Beach, CA
extracts 26 GB of coherent seismic

 Surface-wave tomography for different frequencies reveals a high-velocity region that
coincides with the Newport-Inglewood fault

Claerbout, J.F., 1968, Synthesis of a layered medium from its acoustic transmission response: Geophysics, o o o o o s 0 * Post-correlation processing (correlation coefficient filtering, adaptive covariance filter)

33, 264-269. enhances body-wave energy between individual receiver pairs

* Body-wave tomography provides a high-resolution velocity model that also resolves a high-

Right: Snapshot in time of recorded ambient noise.
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